

RAJARAM COLLEGE VIDYANAGAR, KOLHAPUR – 416 004 (MS)

B. Sc. Part-II, Semester-IV
Chemistry of Elements of 3d Series Elements

Dr. Omprakash B. Pawar

Assistant Professor

Department of Chemistry

Quality Education...

For Personality...

For Nationality...

INTRODUCTION

1	58 Ce	59 Pr	60 Nd		64 Gd				
	90 Th	91 Pa			96 Cm				

WHY STUDY DESCRIPTIVE CHEMISTRY OF TRANSITION METALS

Transition metals are found in nature

- Rocks and minerals contain transition metals.
- The color of many gemstones is due to the presence of transition metal ions.
 - Rubies are red due to Cr
 - Sapphires are blue due to presence of Fe and Ti
- Many biomolecules contain transition metals that are involved in the functions of these biomolecules
 - Vitamin B12 contains Co
 - Hemoglobin, myoglobin, and cytochrome C contain
 Fe

WHY STUDY DESCRIPTIVE CHEMISTRY OF TRANSITION METALS

Transition metals and their compounds have many useful applications

- Fe is used to make steel and stainless steel
- Ti is used to make lightweight alloys
- Transition metal compounds are used as pigments
 - TiO_2 = white
 - PbCrO₄ = yellow
 - Fe₄[Fe(CN)₆]₃ (prussian blue)= blue
- Transition metal compounds are used in many industrial processes.

d - BLOCK ELEMENTS

The elements in the Periodic Table which correspond to the d sublevels filling are called *d block elements*.

These elements are also known as "transition elements"

TRANSITION ELEMENTS

IIIB	IVB	VB	VIB	VIIB		VIIIB		IB	IIB
Sc									
Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd
La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg

FIRST TRANSITION SERIES

Scandium, Sc; 3B(3)

Iron, Fe; 8B(8)

Titanium, Ti; 4B(4)

Vanadium, V; 5B(5)

Chromium, Cr; 6B(6)

Cobalt, Co; 8B(9)

Nickel, Ni; 8B(10)

Copper, Cu; 1B(11)

Manganese, Mn; 7B(7)

Zinc, Zn; 2B(12)

ELECTRONIC CONFIGURATION

$[Ar]3d^{1-10}4s^{1-2}$

<u>Element</u>	Configuration		
Sc	[Ar]3d ¹ 4s ²		
Ti	$[Ar]3d^24s^2$		
V	$[Ar]3d^34s^2$		
Cr	[Ar]3d ⁵ 4s ¹		
Mn	[Ar]3d ⁵ 4s ²		

$$[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6$$

ELECTRONIC CONFIGURATION

Element	<u>Configuration_</u>
Fe	[Ar] 3d ⁶ 4s ²
Co	[Ar] 3d ⁷ 4s ²
Ni	[Ar] 3d ⁸ 4s ²
Cu	[Ar]3d ¹⁰ 4s ¹
7n	[Ar]3d ¹⁰ 4s ²

$$[Ar] = 1s^2 2s^2 2p^6 3s^2 3p^6$$

ELECTRONIC CONFIGURATION OF IONS

• Electronic configuration of Fe³⁺

Fe
$$-3e^- \rightarrow Fe^{3+}$$
 valence ns e⁻'s

[Ar]3d⁶4s² [Ar]3d⁵ removed first, then

n-1 d e⁻'s

Electronic configuration of Fe²⁺

Fe
$$-2e^- \rightarrow Fe^{2+}$$
 valence ns e-'s removed
[Ar]3d⁶4s² [Ar]3d⁶

1. Ni⁺²

2. Cu⁺²

3. Zn⁺³

4. Cr⁺²

OXIDATION STATE

The most stable oxidation states are in red, rarer oxidation states pale blue:

Maximum at Mn(VII)

Scandium, Sc; 3B(3)

Iron, Fe; 8B(8)

Titanium, Ti; 4B(4)

Vanadium, V; 5B(5)

Chromium, Cr; 6B(6)

Cobalt, Co; 8B(9)

Nickel, Ni; 8B(10)

Copper, Cu; 1B(11)

Zinc, Zn; 2B(12)

The highest oxidation state for Mn equals its group number.

Transition metal ions are often highly colored.

 $[Sc(H_2O)_6]^{+2}$

$$3d^{1} 4s^{1}$$

$$21Sc = [Ar] 3d^{1}$$

$$3d^{1}$$

$$Sc^{+2} = [Ar] 1$$

lon	Outer E. C.	Nos of unpaired e	Colour
Sc [III]	3d ⁰	0	Colourless
Ti [III]	3d¹	1	Purple
V [III]	3d ²	2	Green
Cr [III]	3 d ³	3	Violet
Mn [III]	3d ⁴	4	Violet
Fe [II]	3 d ⁵	5	Yellow
Cu [I]	3d ¹⁰	0	Colourless
Zn [II]	3d ¹⁰	0	Colourless

Charge Transfer Transition

1. ELECTRONIC CONFIGURATION OF Cr IS

A. [Ar] *3d*⁴ *4S*²

B. [Ar] 3d⁵ 4S¹

C. [Ar] 3d⁶ 4S⁰

D. [Ar] 3d⁵ 4S²

2. Colour of ion is due to

A. d-d Transition

B. Charge transfer transition

C. Both A & B

D. Ligand Transfer Spectra

3. Compounds of _ _ _ _ ions are colourless

A. Cu [I]	B. Ni [II]
C. Cu [II]	D. Fe [II]

4. Compounds of ions are colour

A. Zn [II]	B. Sc [III]
------------	-------------

Magnetic Character

PARAMAGNETIC SUBSTANCES:

DIAMAGNETIC SUBSTANCES:

FERROMAGNETIC SUBSTANCES: [Fe, Co, Ni]

Thank You...